\(\int \frac {d+e x+f x^2+g x^3}{(a+b x^2+c x^4)^2} \, dx\) [38]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [F(-1)]
   Sympy [F(-1)]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 30, antiderivative size = 386 \[ \int \frac {d+e x+f x^2+g x^3}{\left (a+b x^2+c x^4\right )^2} \, dx=\frac {x \left (b^2 d-2 a c d-a b f+c (b d-2 a f) x^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {b e-2 a g+(2 c e-b g) x^2}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {\sqrt {c} \left (b d-2 a f+\frac {b^2 d-12 a c d+4 a b f}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} a \left (b^2-4 a c\right ) \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\sqrt {c} \left (b d-2 a f-\frac {b^2 d-12 a c d+4 a b f}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} a \left (b^2-4 a c\right ) \sqrt {b+\sqrt {b^2-4 a c}}}+\frac {(2 c e-b g) \text {arctanh}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{3/2}} \]

[Out]

1/2*x*(b^2*d-2*a*c*d-a*b*f+c*(-2*a*f+b*d)*x^2)/a/(-4*a*c+b^2)/(c*x^4+b*x^2+a)+1/2*(-b*e+2*a*g-(-b*g+2*c*e)*x^2
)/(-4*a*c+b^2)/(c*x^4+b*x^2+a)+(-b*g+2*c*e)*arctanh((2*c*x^2+b)/(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(3/2)+1/4*arc
tan(x*2^(1/2)*c^(1/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2))*c^(1/2)*(b*d-2*a*f+(4*a*b*f-12*a*c*d+b^2*d)/(-4*a*c+b^2)^(
1/2))/a/(-4*a*c+b^2)*2^(1/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2)+1/4*arctan(x*2^(1/2)*c^(1/2)/(b+(-4*a*c+b^2)^(1/2))^
(1/2))*c^(1/2)*(b*d-2*a*f+(-4*a*b*f+12*a*c*d-b^2*d)/(-4*a*c+b^2)^(1/2))/a/(-4*a*c+b^2)*2^(1/2)/(b+(-4*a*c+b^2)
^(1/2))^(1/2)

Rubi [A] (verified)

Time = 0.26 (sec) , antiderivative size = 386, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.267, Rules used = {1687, 1192, 1180, 211, 1261, 652, 632, 212} \[ \int \frac {d+e x+f x^2+g x^3}{\left (a+b x^2+c x^4\right )^2} \, dx=\frac {\sqrt {c} \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right ) \left (\frac {4 a b f-12 a c d+b^2 d}{\sqrt {b^2-4 a c}}-2 a f+b d\right )}{2 \sqrt {2} a \left (b^2-4 a c\right ) \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\sqrt {c} \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {\sqrt {b^2-4 a c}+b}}\right ) \left (-\frac {4 a b f-12 a c d+b^2 d}{\sqrt {b^2-4 a c}}-2 a f+b d\right )}{2 \sqrt {2} a \left (b^2-4 a c\right ) \sqrt {\sqrt {b^2-4 a c}+b}}+\frac {(2 c e-b g) \text {arctanh}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{3/2}}+\frac {x \left (c x^2 (b d-2 a f)-a b f-2 a c d+b^2 d\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {-2 a g+x^2 (2 c e-b g)+b e}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )} \]

[In]

Int[(d + e*x + f*x^2 + g*x^3)/(a + b*x^2 + c*x^4)^2,x]

[Out]

(x*(b^2*d - 2*a*c*d - a*b*f + c*(b*d - 2*a*f)*x^2))/(2*a*(b^2 - 4*a*c)*(a + b*x^2 + c*x^4)) - (b*e - 2*a*g + (
2*c*e - b*g)*x^2)/(2*(b^2 - 4*a*c)*(a + b*x^2 + c*x^4)) + (Sqrt[c]*(b*d - 2*a*f + (b^2*d - 12*a*c*d + 4*a*b*f)
/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(2*Sqrt[2]*a*(b^2 - 4*a*c)*Sqrt[b
 - Sqrt[b^2 - 4*a*c]]) + (Sqrt[c]*(b*d - 2*a*f - (b^2*d - 12*a*c*d + 4*a*b*f)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[
2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(2*Sqrt[2]*a*(b^2 - 4*a*c)*Sqrt[b + Sqrt[b^2 - 4*a*c]]) + ((2*c*e
- b*g)*ArcTanh[(b + 2*c*x^2)/Sqrt[b^2 - 4*a*c]])/(b^2 - 4*a*c)^(3/2)

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 632

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 652

Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((b*d - 2*a*e + (2*c*d -
b*e)*x)/((p + 1)*(b^2 - 4*a*c)))*(a + b*x + c*x^2)^(p + 1), x] - Dist[(2*p + 3)*((2*c*d - b*e)/((p + 1)*(b^2 -
 4*a*c))), Int[(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[2*c*d - b*e, 0] && NeQ[b^
2 - 4*a*c, 0] && LtQ[p, -1] && NeQ[p, -3/2]

Rule 1180

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 1192

Int[((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[x*(a*b*e - d*(b^2 - 2*a
*c) - c*(b*d - 2*a*e)*x^2)*((a + b*x^2 + c*x^4)^(p + 1)/(2*a*(p + 1)*(b^2 - 4*a*c))), x] + Dist[1/(2*a*(p + 1)
*(b^2 - 4*a*c)), Int[Simp[(2*p + 3)*d*b^2 - a*b*e - 2*a*c*d*(4*p + 5) + (4*p + 7)*(d*b - 2*a*e)*c*x^2, x]*(a +
 b*x^2 + c*x^4)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e
^2, 0] && LtQ[p, -1] && IntegerQ[2*p]

Rule 1261

Int[(x_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[
Int[(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x]

Rule 1687

Int[(Pq_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], k}, Int[Sum[Coeff[
Pq, x, 2*k]*x^(2*k), {k, 0, q/2}]*(a + b*x^2 + c*x^4)^p, x] + Int[x*Sum[Coeff[Pq, x, 2*k + 1]*x^(2*k), {k, 0,
(q - 1)/2}]*(a + b*x^2 + c*x^4)^p, x]] /; FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] &&  !PolyQ[Pq, x^2]

Rubi steps \begin{align*} \text {integral}& = \int \frac {d+f x^2}{\left (a+b x^2+c x^4\right )^2} \, dx+\int \frac {x \left (e+g x^2\right )}{\left (a+b x^2+c x^4\right )^2} \, dx \\ & = \frac {x \left (b^2 d-2 a c d-a b f+c (b d-2 a f) x^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {1}{2} \text {Subst}\left (\int \frac {e+g x}{\left (a+b x+c x^2\right )^2} \, dx,x,x^2\right )-\frac {\int \frac {-b^2 d+6 a c d-a b f-c (b d-2 a f) x^2}{a+b x^2+c x^4} \, dx}{2 a \left (b^2-4 a c\right )} \\ & = \frac {x \left (b^2 d-2 a c d-a b f+c (b d-2 a f) x^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {b e-2 a g+(2 c e-b g) x^2}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {\left (c \left (b d-2 a f-\frac {b^2 d-12 a c d+4 a b f}{\sqrt {b^2-4 a c}}\right )\right ) \int \frac {1}{\frac {b}{2}+\frac {1}{2} \sqrt {b^2-4 a c}+c x^2} \, dx}{4 a \left (b^2-4 a c\right )}+\frac {\left (c \left (b d-2 a f+\frac {b^2 d-12 a c d+4 a b f}{\sqrt {b^2-4 a c}}\right )\right ) \int \frac {1}{\frac {b}{2}-\frac {1}{2} \sqrt {b^2-4 a c}+c x^2} \, dx}{4 a \left (b^2-4 a c\right )}-\frac {(2 c e-b g) \text {Subst}\left (\int \frac {1}{a+b x+c x^2} \, dx,x,x^2\right )}{2 \left (b^2-4 a c\right )} \\ & = \frac {x \left (b^2 d-2 a c d-a b f+c (b d-2 a f) x^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {b e-2 a g+(2 c e-b g) x^2}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {\sqrt {c} \left (b d-2 a f+\frac {b^2 d-12 a c d+4 a b f}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} a \left (b^2-4 a c\right ) \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\sqrt {c} \left (b d-2 a f-\frac {b^2 d-12 a c d+4 a b f}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} a \left (b^2-4 a c\right ) \sqrt {b+\sqrt {b^2-4 a c}}}+\frac {(2 c e-b g) \text {Subst}\left (\int \frac {1}{b^2-4 a c-x^2} \, dx,x,b+2 c x^2\right )}{b^2-4 a c} \\ & = \frac {x \left (b^2 d-2 a c d-a b f+c (b d-2 a f) x^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {b e-2 a g+(2 c e-b g) x^2}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {\sqrt {c} \left (b d-2 a f+\frac {b^2 d-12 a c d+4 a b f}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} a \left (b^2-4 a c\right ) \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\sqrt {c} \left (b d-2 a f-\frac {b^2 d-12 a c d+4 a b f}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} a \left (b^2-4 a c\right ) \sqrt {b+\sqrt {b^2-4 a c}}}+\frac {(2 c e-b g) \tanh ^{-1}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{3/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.74 (sec) , antiderivative size = 421, normalized size of antiderivative = 1.09 \[ \int \frac {d+e x+f x^2+g x^3}{\left (a+b x^2+c x^4\right )^2} \, dx=\frac {1}{4} \left (\frac {-4 a^2 g-2 b d x \left (b+c x^2\right )+4 a c x (d+x (e+f x))+2 a b (e+x (f-g x))}{a \left (-b^2+4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {\sqrt {2} \sqrt {c} \left (b^2 d+b \left (\sqrt {b^2-4 a c} d+4 a f\right )-2 a \left (6 c d+\sqrt {b^2-4 a c} f\right )\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{a \left (b^2-4 a c\right )^{3/2} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\sqrt {2} \sqrt {c} \left (-b^2 d+12 a c d+b \sqrt {b^2-4 a c} d-4 a b f-2 a \sqrt {b^2-4 a c} f\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{a \left (b^2-4 a c\right )^{3/2} \sqrt {b+\sqrt {b^2-4 a c}}}+\frac {2 (-2 c e+b g) \log \left (-b+\sqrt {b^2-4 a c}-2 c x^2\right )}{\left (b^2-4 a c\right )^{3/2}}-\frac {2 (-2 c e+b g) \log \left (b+\sqrt {b^2-4 a c}+2 c x^2\right )}{\left (b^2-4 a c\right )^{3/2}}\right ) \]

[In]

Integrate[(d + e*x + f*x^2 + g*x^3)/(a + b*x^2 + c*x^4)^2,x]

[Out]

((-4*a^2*g - 2*b*d*x*(b + c*x^2) + 4*a*c*x*(d + x*(e + f*x)) + 2*a*b*(e + x*(f - g*x)))/(a*(-b^2 + 4*a*c)*(a +
 b*x^2 + c*x^4)) + (Sqrt[2]*Sqrt[c]*(b^2*d + b*(Sqrt[b^2 - 4*a*c]*d + 4*a*f) - 2*a*(6*c*d + Sqrt[b^2 - 4*a*c]*
f))*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(a*(b^2 - 4*a*c)^(3/2)*Sqrt[b - Sqrt[b^2 - 4*a*c]
]) + (Sqrt[2]*Sqrt[c]*(-(b^2*d) + 12*a*c*d + b*Sqrt[b^2 - 4*a*c]*d - 4*a*b*f - 2*a*Sqrt[b^2 - 4*a*c]*f)*ArcTan
[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(a*(b^2 - 4*a*c)^(3/2)*Sqrt[b + Sqrt[b^2 - 4*a*c]]) + (2*(-
2*c*e + b*g)*Log[-b + Sqrt[b^2 - 4*a*c] - 2*c*x^2])/(b^2 - 4*a*c)^(3/2) - (2*(-2*c*e + b*g)*Log[b + Sqrt[b^2 -
 4*a*c] + 2*c*x^2])/(b^2 - 4*a*c)^(3/2))/4

Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.28 (sec) , antiderivative size = 252, normalized size of antiderivative = 0.65

method result size
risch \(\frac {\frac {c \left (2 a f -b d \right ) x^{3}}{2 a \left (4 a c -b^{2}\right )}-\frac {\left (b g -2 e c \right ) x^{2}}{2 \left (4 a c -b^{2}\right )}+\frac {\left (a b f +2 a c d -b^{2} d \right ) x}{2 a \left (4 a c -b^{2}\right )}-\frac {2 a g -b e}{2 \left (4 a c -b^{2}\right )}}{c \,x^{4}+b \,x^{2}+a}+\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{4}+\textit {\_Z}^{2} b +a \right )}{\sum }\frac {\left (\frac {c \left (2 a f -b d \right ) \textit {\_R}^{2}}{a \left (4 a c -b^{2}\right )}-\frac {2 \left (b g -2 e c \right ) \textit {\_R}}{4 a c -b^{2}}-\frac {a b f -6 a c d +b^{2} d}{a \left (4 a c -b^{2}\right )}\right ) \ln \left (x -\textit {\_R} \right )}{2 c \,\textit {\_R}^{3}+\textit {\_R} b}\right )}{4}\) \(252\)
default \(16 c^{2} \left (-\frac {\frac {-\frac {\left (-4 a c d \sqrt {-4 a c +b^{2}}+b^{2} d \sqrt {-4 a c +b^{2}}+8 a^{2} c f -2 a \,b^{2} f -4 a b c d +b^{3} d \right ) x}{16 a c}-\frac {4 \sqrt {-4 a c +b^{2}}\, a c g -\sqrt {-4 a c +b^{2}}\, b^{2} g -4 a b g c +8 a \,c^{2} e +b^{3} g -2 b^{2} c e}{16 c^{2}}}{x^{2}+\frac {b}{2 c}-\frac {\sqrt {-4 a c +b^{2}}}{2 c}}+\frac {-\frac {\left (4 \sqrt {-4 a c +b^{2}}\, a b g -8 a c e \sqrt {-4 a c +b^{2}}\right ) \ln \left (-2 c \,x^{2}+\sqrt {-4 a c +b^{2}}-b \right )}{4 c}+\frac {\left (4 \sqrt {-4 a c +b^{2}}\, a b f -12 a c d \sqrt {-4 a c +b^{2}}+b^{2} d \sqrt {-4 a c +b^{2}}+8 a^{2} c f -2 a \,b^{2} f -4 a b c d +b^{3} d \right ) \sqrt {2}\, \operatorname {arctanh}\left (\frac {c x \sqrt {2}}{\sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{2 \sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}}{8 a}}{4 c \left (4 a c -b^{2}\right )^{2}}+\frac {\frac {\frac {\left (4 a c d \sqrt {-4 a c +b^{2}}-b^{2} d \sqrt {-4 a c +b^{2}}+8 a^{2} c f -2 a \,b^{2} f -4 a b c d +b^{3} d \right ) x}{16 a c}+\frac {-4 \sqrt {-4 a c +b^{2}}\, a c g +\sqrt {-4 a c +b^{2}}\, b^{2} g -4 a b g c +8 a \,c^{2} e +b^{3} g -2 b^{2} c e}{16 c^{2}}}{x^{2}+\frac {\sqrt {-4 a c +b^{2}}}{2 c}+\frac {b}{2 c}}+\frac {\frac {\left (-4 \sqrt {-4 a c +b^{2}}\, a b g +8 a c e \sqrt {-4 a c +b^{2}}\right ) \ln \left (2 c \,x^{2}+\sqrt {-4 a c +b^{2}}+b \right )}{4 c}+\frac {\left (-4 \sqrt {-4 a c +b^{2}}\, a b f +12 a c d \sqrt {-4 a c +b^{2}}-b^{2} d \sqrt {-4 a c +b^{2}}+8 a^{2} c f -2 a \,b^{2} f -4 a b c d +b^{3} d \right ) \sqrt {2}\, \arctan \left (\frac {c x \sqrt {2}}{\sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{2 \sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}}{8 a}}{4 c \left (4 a c -b^{2}\right )^{2}}\right )\) \(714\)

[In]

int((g*x^3+f*x^2+e*x+d)/(c*x^4+b*x^2+a)^2,x,method=_RETURNVERBOSE)

[Out]

(1/2*c*(2*a*f-b*d)/a/(4*a*c-b^2)*x^3-1/2*(b*g-2*c*e)/(4*a*c-b^2)*x^2+1/2*(a*b*f+2*a*c*d-b^2*d)/a/(4*a*c-b^2)*x
-1/2*(2*a*g-b*e)/(4*a*c-b^2))/(c*x^4+b*x^2+a)+1/4*sum((c*(2*a*f-b*d)/a/(4*a*c-b^2)*_R^2-2*(b*g-2*c*e)/(4*a*c-b
^2)*_R-(a*b*f-6*a*c*d+b^2*d)/a/(4*a*c-b^2))/(2*_R^3*c+_R*b)*ln(x-_R),_R=RootOf(_Z^4*c+_Z^2*b+a))

Fricas [F(-1)]

Timed out. \[ \int \frac {d+e x+f x^2+g x^3}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Timed out} \]

[In]

integrate((g*x^3+f*x^2+e*x+d)/(c*x^4+b*x^2+a)^2,x, algorithm="fricas")

[Out]

Timed out

Sympy [F(-1)]

Timed out. \[ \int \frac {d+e x+f x^2+g x^3}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Timed out} \]

[In]

integrate((g*x**3+f*x**2+e*x+d)/(c*x**4+b*x**2+a)**2,x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {d+e x+f x^2+g x^3}{\left (a+b x^2+c x^4\right )^2} \, dx=\int { \frac {g x^{3} + f x^{2} + e x + d}{{\left (c x^{4} + b x^{2} + a\right )}^{2}} \,d x } \]

[In]

integrate((g*x^3+f*x^2+e*x+d)/(c*x^4+b*x^2+a)^2,x, algorithm="maxima")

[Out]

1/2*((b*c*d - 2*a*c*f)*x^3 - a*b*e + 2*a^2*g - (2*a*c*e - a*b*g)*x^2 - (a*b*f - (b^2 - 2*a*c)*d)*x)/((a*b^2*c
- 4*a^2*c^2)*x^4 + a^2*b^2 - 4*a^3*c + (a*b^3 - 4*a^2*b*c)*x^2) - 1/2*integrate(-(a*b*f + (b*c*d - 2*a*c*f)*x^
2 + (b^2 - 6*a*c)*d - 2*(2*a*c*e - a*b*g)*x)/(c*x^4 + b*x^2 + a), x)/(a*b^2 - 4*a^2*c)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 5573 vs. \(2 (338) = 676\).

Time = 1.79 (sec) , antiderivative size = 5573, normalized size of antiderivative = 14.44 \[ \int \frac {d+e x+f x^2+g x^3}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Too large to display} \]

[In]

integrate((g*x^3+f*x^2+e*x+d)/(c*x^4+b*x^2+a)^2,x, algorithm="giac")

[Out]

1/2*(b*c*d*x^3 - 2*a*c*f*x^3 - 2*a*c*e*x^2 + a*b*g*x^2 + b^2*d*x - 2*a*c*d*x - a*b*f*x - a*b*e + 2*a^2*g)/((c*
x^4 + b*x^2 + a)*(a*b^2 - 4*a^2*c)) + 1/16*((2*b^3*c^2 - 8*a*b*c^3 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt
(b^2 - 4*a*c)*c)*b^3 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b*c + 2*sqrt(2)*sqrt(b^2
- 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^2*c - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b*c
^2 - 2*(b^2 - 4*a*c)*b*c^2)*(a*b^2 - 4*a^2*c)^2*d - 2*(2*a*b^2*c^2 - 8*a^2*c^3 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqr
t(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^2 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*c + 2*sqr
t(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b*c - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 -
 4*a*c)*c)*a*c^2 - 2*(b^2 - 4*a*c)*a*c^2)*(a*b^2 - 4*a^2*c)^2*f + 2*(sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a
*b^6 - 14*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b^4*c - 2*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^5*
c - 2*a*b^6*c + 64*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*b^2*c^2 + 20*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*
c)*c)*a^2*b^3*c^2 + sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^4*c^2 + 28*a^2*b^4*c^2 - 96*sqrt(2)*sqrt(b*c +
 sqrt(b^2 - 4*a*c)*c)*a^4*c^3 - 48*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*b*c^3 - 10*sqrt(2)*sqrt(b*c + s
qrt(b^2 - 4*a*c)*c)*a^2*b^2*c^3 - 128*a^3*b^2*c^3 + 24*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*c^4 + 192*a
^4*c^4 + 2*(b^2 - 4*a*c)*a*b^4*c - 20*(b^2 - 4*a*c)*a^2*b^2*c^2 + 48*(b^2 - 4*a*c)*a^3*c^3)*d*abs(a*b^2 - 4*a^
2*c) + 2*(sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b^5 - 8*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*b^3*
c - 2*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b^4*c - 2*a^2*b^5*c + 16*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c
)*c)*a^4*b*c^2 + 8*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*b^2*c^2 + sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*
c)*a^2*b^3*c^2 + 16*a^3*b^3*c^2 - 4*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*b*c^3 - 32*a^4*b*c^3 + 2*(b^2
- 4*a*c)*a^2*b^3*c - 8*(b^2 - 4*a*c)*a^3*b*c^2)*f*abs(a*b^2 - 4*a^2*c) + (2*a^2*b^7*c^2 - 40*a^3*b^5*c^3 + 224
*a^4*b^3*c^4 - 384*a^5*b*c^5 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b^7 + 20*sqrt(2)*
sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*b^5*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2
- 4*a*c)*c)*a^2*b^6*c - 112*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^4*b^3*c^2 - 32*sqrt(2)
*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*b^4*c^2 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2
 - 4*a*c)*c)*a^2*b^5*c^2 + 192*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^5*b*c^3 + 96*sqrt(2
)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^4*b^2*c^3 + 16*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt
(b^2 - 4*a*c)*c)*a^3*b^3*c^3 - 48*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^4*b*c^4 - 2*(b^2
 - 4*a*c)*a^2*b^5*c^2 + 32*(b^2 - 4*a*c)*a^3*b^3*c^3 - 96*(b^2 - 4*a*c)*a^4*b*c^4)*d + 4*(2*a^3*b^6*c^2 - 16*a
^4*b^4*c^3 + 32*a^5*b^2*c^4 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*b^6 + 8*sqrt(2)*sq
rt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^4*b^4*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 -
4*a*c)*c)*a^3*b^5*c - 16*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^5*b^2*c^2 - 8*sqrt(2)*sqr
t(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^4*b^3*c^2 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4
*a*c)*c)*a^3*b^4*c^2 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^4*b^2*c^3 - 2*(b^2 - 4*a*
c)*a^3*b^4*c^2 + 8*(b^2 - 4*a*c)*a^4*b^2*c^3)*f)*arctan(2*sqrt(1/2)*x/sqrt((a*b^3 - 4*a^2*b*c + sqrt((a*b^3 -
4*a^2*b*c)^2 - 4*(a^2*b^2 - 4*a^3*c)*(a*b^2*c - 4*a^2*c^2)))/(a*b^2*c - 4*a^2*c^2)))/((a^3*b^6 - 12*a^4*b^4*c
- 2*a^3*b^5*c + 48*a^5*b^2*c^2 + 16*a^4*b^3*c^2 + a^3*b^4*c^2 - 64*a^6*c^3 - 32*a^5*b*c^3 - 8*a^4*b^2*c^3 + 16
*a^5*c^4)*abs(a*b^2 - 4*a^2*c)*abs(c)) + 1/16*((2*b^3*c^2 - 8*a*b*c^3 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - s
qrt(b^2 - 4*a*c)*c)*b^3 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b*c + 2*sqrt(2)*sqrt(b
^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^2*c - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*
b*c^2 - 2*(b^2 - 4*a*c)*b*c^2)*(a*b^2 - 4*a^2*c)^2*d - 2*(2*a*b^2*c^2 - 8*a^2*c^3 - sqrt(2)*sqrt(b^2 - 4*a*c)*
sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^2 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*c + 2*
sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b*c - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^
2 - 4*a*c)*c)*a*c^2 - 2*(b^2 - 4*a*c)*a*c^2)*(a*b^2 - 4*a^2*c)^2*f + 2*(sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c
)*a*b^6 - 14*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*b^4*c - 2*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b
^5*c + 2*a*b^6*c + 64*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^3*b^2*c^2 + 20*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4
*a*c)*c)*a^2*b^3*c^2 + sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^4*c^2 - 28*a^2*b^4*c^2 - 96*sqrt(2)*sqrt(b*
c - sqrt(b^2 - 4*a*c)*c)*a^4*c^3 - 48*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^3*b*c^3 - 10*sqrt(2)*sqrt(b*c
- sqrt(b^2 - 4*a*c)*c)*a^2*b^2*c^3 + 128*a^3*b^2*c^3 + 24*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^3*c^4 - 19
2*a^4*c^4 - 2*(b^2 - 4*a*c)*a*b^4*c + 20*(b^2 - 4*a*c)*a^2*b^2*c^2 - 48*(b^2 - 4*a*c)*a^3*c^3)*d*abs(a*b^2 - 4
*a^2*c) + 2*(sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*b^5 - 8*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^3*b
^3*c - 2*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*b^4*c + 2*a^2*b^5*c + 16*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*
a*c)*c)*a^4*b*c^2 + 8*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^3*b^2*c^2 + sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*
c)*c)*a^2*b^3*c^2 - 16*a^3*b^3*c^2 - 4*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^3*b*c^3 + 32*a^4*b*c^3 - 2*(b
^2 - 4*a*c)*a^2*b^3*c + 8*(b^2 - 4*a*c)*a^3*b*c^2)*f*abs(a*b^2 - 4*a^2*c) + (2*a^2*b^7*c^2 - 40*a^3*b^5*c^3 +
224*a^4*b^3*c^4 - 384*a^5*b*c^5 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*b^7 + 20*sqrt(
2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^3*b^5*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b
^2 - 4*a*c)*c)*a^2*b^6*c - 112*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^4*b^3*c^2 - 32*sqrt
(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^3*b^4*c^2 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(
b^2 - 4*a*c)*c)*a^2*b^5*c^2 + 192*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^5*b*c^3 + 96*sqr
t(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^4*b^2*c^3 + 16*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - s
qrt(b^2 - 4*a*c)*c)*a^3*b^3*c^3 - 48*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^4*b*c^4 - 2*(
b^2 - 4*a*c)*a^2*b^5*c^2 + 32*(b^2 - 4*a*c)*a^3*b^3*c^3 - 96*(b^2 - 4*a*c)*a^4*b*c^4)*d + 4*(2*a^3*b^6*c^2 - 1
6*a^4*b^4*c^3 + 32*a^5*b^2*c^4 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^3*b^6 + 8*sqrt(2)
*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^4*b^4*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2
 - 4*a*c)*c)*a^3*b^5*c - 16*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^5*b^2*c^2 - 8*sqrt(2)*
sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^4*b^3*c^2 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2
- 4*a*c)*c)*a^3*b^4*c^2 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^4*b^2*c^3 - 2*(b^2 - 4
*a*c)*a^3*b^4*c^2 + 8*(b^2 - 4*a*c)*a^4*b^2*c^3)*f)*arctan(2*sqrt(1/2)*x/sqrt((a*b^3 - 4*a^2*b*c - sqrt((a*b^3
 - 4*a^2*b*c)^2 - 4*(a^2*b^2 - 4*a^3*c)*(a*b^2*c - 4*a^2*c^2)))/(a*b^2*c - 4*a^2*c^2)))/((a^3*b^6 - 12*a^4*b^4
*c - 2*a^3*b^5*c + 48*a^5*b^2*c^2 + 16*a^4*b^3*c^2 + a^3*b^4*c^2 - 64*a^6*c^3 - 32*a^5*b*c^3 - 8*a^4*b^2*c^3 +
 16*a^5*c^4)*abs(a*b^2 - 4*a^2*c)*abs(c)) - 1/8*(2*(b^3*c^2 - 4*a*b*c^3 - 2*b^2*c^3 + b*c^4 - (b^2*c^2 - 4*a*c
^3 - 2*b*c^3 + c^4)*sqrt(b^2 - 4*a*c))*e*abs(a*b^2 - 4*a^2*c) - (b^4*c - 4*a*b^2*c^2 - 2*b^3*c^2 + b^2*c^3 + (
b^3*c - 4*a*b*c^2 - 2*b^2*c^2 + b*c^3)*sqrt(b^2 - 4*a*c))*g*abs(a*b^2 - 4*a^2*c) - 2*(a*b^5*c^2 - 8*a^2*b^3*c^
3 - 2*a*b^4*c^3 + 16*a^3*b*c^4 + 8*a^2*b^2*c^4 + a*b^3*c^4 - 4*a^2*b*c^5 + (a*b^4*c^2 - 4*a^2*b^2*c^3 - 2*a*b^
3*c^3 + a*b^2*c^4)*sqrt(b^2 - 4*a*c))*e + (a*b^6*c - 8*a^2*b^4*c^2 - 2*a*b^5*c^2 + 16*a^3*b^2*c^3 + 8*a^2*b^3*
c^3 + a*b^4*c^3 - 4*a^2*b^2*c^4 + (a*b^5*c - 4*a^2*b^3*c^2 - 2*a*b^4*c^2 + a*b^3*c^3)*sqrt(b^2 - 4*a*c))*g)*lo
g(x^2 + 1/2*(a*b^3 - 4*a^2*b*c + sqrt((a*b^3 - 4*a^2*b*c)^2 - 4*(a^2*b^2 - 4*a^3*c)*(a*b^2*c - 4*a^2*c^2)))/(a
*b^2*c - 4*a^2*c^2))/((a*b^4 - 8*a^2*b^2*c - 2*a*b^3*c + 16*a^3*c^2 + 8*a^2*b*c^2 + a*b^2*c^2 - 4*a^2*c^3)*c^2
*abs(a*b^2 - 4*a^2*c)) - 1/8*(2*(b^3*c^2 - 4*a*b*c^3 - 2*b^2*c^3 + b*c^4 + (b^2*c^2 - 4*a*c^3 - 2*b*c^3 + c^4)
*sqrt(b^2 - 4*a*c))*e*abs(a*b^2 - 4*a^2*c) - (b^4*c - 4*a*b^2*c^2 - 2*b^3*c^2 + b^2*c^3 - (b^3*c - 4*a*b*c^2 -
 2*b^2*c^2 + b*c^3)*sqrt(b^2 - 4*a*c))*g*abs(a*b^2 - 4*a^2*c) + 2*(a*b^5*c^2 - 8*a^2*b^3*c^3 - 2*a*b^4*c^3 + 1
6*a^3*b*c^4 + 8*a^2*b^2*c^4 + a*b^3*c^4 - 4*a^2*b*c^5 + (a*b^4*c^2 - 4*a^2*b^2*c^3 - 2*a*b^3*c^3 + a*b^2*c^4)*
sqrt(b^2 - 4*a*c))*e - (a*b^6*c - 8*a^2*b^4*c^2 - 2*a*b^5*c^2 + 16*a^3*b^2*c^3 + 8*a^2*b^3*c^3 + a*b^4*c^3 - 4
*a^2*b^2*c^4 - (a*b^5*c - 4*a^2*b^3*c^2 - 2*a*b^4*c^2 + a*b^3*c^3)*sqrt(b^2 - 4*a*c))*g)*log(x^2 + 1/2*(a*b^3
- 4*a^2*b*c - sqrt((a*b^3 - 4*a^2*b*c)^2 - 4*(a^2*b^2 - 4*a^3*c)*(a*b^2*c - 4*a^2*c^2)))/(a*b^2*c - 4*a^2*c^2)
)/((a*b^4 - 8*a^2*b^2*c - 2*a*b^3*c + 16*a^3*c^2 + 8*a^2*b*c^2 + a*b^2*c^2 - 4*a^2*c^3)*c^2*abs(a*b^2 - 4*a^2*
c))

Mupad [B] (verification not implemented)

Time = 8.61 (sec) , antiderivative size = 7373, normalized size of antiderivative = 19.10 \[ \int \frac {d+e x+f x^2+g x^3}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Too large to display} \]

[In]

int((d + e*x + f*x^2 + g*x^3)/(a + b*x^2 + c*x^4)^2,x)

[Out]

symsum(log((5*b^3*c^4*d^3 + 8*a^3*c^4*f^3 - 96*a^2*c^5*d*e^2 + 72*a^2*c^5*d^2*f - 3*b^4*c^3*d^2*f + 6*a^2*b^2*
c^3*f^3 - 36*a*b*c^5*d^3 + 16*a*b^2*c^4*d*e^2 + 18*a*b^2*c^4*d^2*f + 3*a*b^3*c^3*d*f^2 - 60*a^2*b*c^4*d*f^2 +
4*a*b^4*c^2*d*g^2 + 16*a^2*b*c^4*e^2*f - 24*a^2*b^2*c^3*d*g^2 + 4*a^2*b^3*c^2*f*g^2 - 16*a*b^3*c^3*d*e*g + 96*
a^2*b*c^4*d*e*g - 16*a^2*b^2*c^3*e*f*g)/(8*(a^2*b^6 - 64*a^5*c^3 - 12*a^3*b^4*c + 48*a^4*b^2*c^2)) - root(1572
864*a^8*b^2*c^5*z^4 - 983040*a^7*b^4*c^4*z^4 + 327680*a^6*b^6*c^3*z^4 - 61440*a^5*b^8*c^2*z^4 + 6144*a^4*b^10*
c*z^4 - 1048576*a^9*c^6*z^4 - 256*a^3*b^12*z^4 + 32768*a^6*b*c^4*e*g*z^2 - 512*a^3*b^7*c*e*g*z^2 + 576*a^2*b^8
*c*d*f*z^2 - 24576*a^5*b^3*c^3*e*g*z^2 + 6144*a^4*b^5*c^2*e*g*z^2 + 24576*a^5*b^2*c^4*d*f*z^2 - 3072*a^3*b^6*c
^2*d*f*z^2 + 2048*a^4*b^4*c^3*d*f*z^2 - 1536*a^4*b^6*c*g^2*z^2 + 12288*a^6*b*c^4*f^2*z^2 + 61440*a^5*b*c^5*d^2
*z^2 - 49152*a^6*c^5*d*f*z^2 + 432*a*b^9*c*d^2*z^2 - 8192*a^6*b^2*c^3*g^2*z^2 + 6144*a^5*b^4*c^2*g^2*z^2 - 819
2*a^5*b^3*c^3*f^2*z^2 + 1536*a^4*b^5*c^2*f^2*z^2 + 24576*a^5*b^2*c^4*e^2*z^2 - 6144*a^4*b^4*c^3*e^2*z^2 + 512*
a^3*b^6*c^2*e^2*z^2 - 61440*a^4*b^3*c^4*d^2*z^2 + 24064*a^3*b^5*c^3*d^2*z^2 - 4608*a^2*b^7*c^2*d^2*z^2 - 32*a*
b^10*d*f*z^2 + 128*a^3*b^8*g^2*z^2 - 32768*a^6*c^5*e^2*z^2 - 16*a^2*b^9*f^2*z^2 - 16*b^11*d^2*z^2 + 384*a^2*b^
6*c*d*f*g*z - 4096*a^4*b*c^4*d*e*f*z + 64*a*b^7*c*d*e*f*z + 2048*a^4*b^2*c^3*d*f*g*z - 1536*a^3*b^4*c^2*d*f*g*
z + 3072*a^3*b^3*c^3*d*e*f*z - 768*a^2*b^5*c^2*d*e*f*z + 1024*a^5*b*c^3*f^2*g*z + 192*a^3*b^5*c*f^2*g*z - 9216
*a^4*b*c^4*d^2*g*z + 32*a^2*b^6*c*e*f^2*z - 672*a*b^6*c^2*d^2*e*z + 336*a*b^7*c*d^2*g*z - 768*a^4*b^3*c^2*f^2*
g*z + 7936*a^3*b^3*c^3*d^2*g*z - 2496*a^2*b^5*c^2*d^2*g*z + 1536*a^4*b^2*c^3*e*f^2*z - 384*a^3*b^4*c^2*e*f^2*z
 - 15872*a^3*b^2*c^4*d^2*e*z + 4992*a^2*b^4*c^3*d^2*e*z - 32*a*b^8*d*f*g*z - 16*a^2*b^7*f^2*g*z - 2048*a^5*c^4
*e*f^2*z + 18432*a^4*c^5*d^2*e*z + 32*b^8*c*d^2*e*z - 16*b^9*d^2*g*z - 768*a^3*b*c^3*d*e*f*g + 32*a*b^5*c*d*e*
f*g - 192*a^2*b^3*c^2*d*e*f*g + 16*a^2*b^4*c*e*f^2*g + 48*a^2*b^4*c*d*f*g^2 - 240*a*b^4*c^2*d^2*e*g - 32*a*b^4
*c^2*d*e^2*f + 192*a^3*b^2*c^2*e*f^2*g + 192*a^3*b^2*c^2*d*f*g^2 + 960*a^2*b^2*c^3*d^2*e*g + 192*a^2*b^2*c^3*d
*e^2*f - 48*a^3*b^3*c*f^2*g^2 - 192*a^3*b*c^3*e^2*f^2 + 198*a*b^4*c^2*d^2*f^2 + 144*a^2*b^3*c^2*d*f^3 - 960*a^
2*b*c^4*d^2*e^2 + 240*a*b^3*c^3*d^2*e^2 + 768*a^3*c^4*d*e^2*f + 512*a^3*b*c^3*e^3*g + 128*a^3*b^3*c*e*g^3 + 60
*a*b^5*c*d^2*g^2 + 2016*a^2*b*c^4*d^3*f - 496*a*b^3*c^3*d^3*f + 224*a^3*b*c^3*d*f^3 - 384*a^3*b^2*c^2*e^2*g^2
- 240*a^2*b^3*c^2*d^2*g^2 - 16*a^2*b^3*c^2*e^2*f^2 - 960*a^2*b^2*c^3*d^2*f^2 + 16*b^6*c*d^2*e*g - 8*a*b^6*d*f*
g^2 - 18*a*b^5*c*d*f^3 - 4*a^2*b^5*f^2*g^2 - 288*a^3*c^4*d^2*f^2 - 16*b^5*c^2*d^2*e^2 - 24*a^3*b^2*c^2*f^4 + 3
0*b^5*c^2*d^3*f - 9*b^6*c*d^2*f^2 - 9*a^2*b^4*c*f^4 + 360*a*b^2*c^4*d^4 - 4*b^7*d^2*g^2 - 16*a^4*c^3*f^4 - 16*
a^3*b^4*g^4 - 256*a^3*c^4*e^4 - 25*b^4*c^3*d^4 - 1296*a^2*c^5*d^4, z, k)*(root(1572864*a^8*b^2*c^5*z^4 - 98304
0*a^7*b^4*c^4*z^4 + 327680*a^6*b^6*c^3*z^4 - 61440*a^5*b^8*c^2*z^4 + 6144*a^4*b^10*c*z^4 - 1048576*a^9*c^6*z^4
 - 256*a^3*b^12*z^4 + 32768*a^6*b*c^4*e*g*z^2 - 512*a^3*b^7*c*e*g*z^2 + 576*a^2*b^8*c*d*f*z^2 - 24576*a^5*b^3*
c^3*e*g*z^2 + 6144*a^4*b^5*c^2*e*g*z^2 + 24576*a^5*b^2*c^4*d*f*z^2 - 3072*a^3*b^6*c^2*d*f*z^2 + 2048*a^4*b^4*c
^3*d*f*z^2 - 1536*a^4*b^6*c*g^2*z^2 + 12288*a^6*b*c^4*f^2*z^2 + 61440*a^5*b*c^5*d^2*z^2 - 49152*a^6*c^5*d*f*z^
2 + 432*a*b^9*c*d^2*z^2 - 8192*a^6*b^2*c^3*g^2*z^2 + 6144*a^5*b^4*c^2*g^2*z^2 - 8192*a^5*b^3*c^3*f^2*z^2 + 153
6*a^4*b^5*c^2*f^2*z^2 + 24576*a^5*b^2*c^4*e^2*z^2 - 6144*a^4*b^4*c^3*e^2*z^2 + 512*a^3*b^6*c^2*e^2*z^2 - 61440
*a^4*b^3*c^4*d^2*z^2 + 24064*a^3*b^5*c^3*d^2*z^2 - 4608*a^2*b^7*c^2*d^2*z^2 - 32*a*b^10*d*f*z^2 + 128*a^3*b^8*
g^2*z^2 - 32768*a^6*c^5*e^2*z^2 - 16*a^2*b^9*f^2*z^2 - 16*b^11*d^2*z^2 + 384*a^2*b^6*c*d*f*g*z - 4096*a^4*b*c^
4*d*e*f*z + 64*a*b^7*c*d*e*f*z + 2048*a^4*b^2*c^3*d*f*g*z - 1536*a^3*b^4*c^2*d*f*g*z + 3072*a^3*b^3*c^3*d*e*f*
z - 768*a^2*b^5*c^2*d*e*f*z + 1024*a^5*b*c^3*f^2*g*z + 192*a^3*b^5*c*f^2*g*z - 9216*a^4*b*c^4*d^2*g*z + 32*a^2
*b^6*c*e*f^2*z - 672*a*b^6*c^2*d^2*e*z + 336*a*b^7*c*d^2*g*z - 768*a^4*b^3*c^2*f^2*g*z + 7936*a^3*b^3*c^3*d^2*
g*z - 2496*a^2*b^5*c^2*d^2*g*z + 1536*a^4*b^2*c^3*e*f^2*z - 384*a^3*b^4*c^2*e*f^2*z - 15872*a^3*b^2*c^4*d^2*e*
z + 4992*a^2*b^4*c^3*d^2*e*z - 32*a*b^8*d*f*g*z - 16*a^2*b^7*f^2*g*z - 2048*a^5*c^4*e*f^2*z + 18432*a^4*c^5*d^
2*e*z + 32*b^8*c*d^2*e*z - 16*b^9*d^2*g*z - 768*a^3*b*c^3*d*e*f*g + 32*a*b^5*c*d*e*f*g - 192*a^2*b^3*c^2*d*e*f
*g + 16*a^2*b^4*c*e*f^2*g + 48*a^2*b^4*c*d*f*g^2 - 240*a*b^4*c^2*d^2*e*g - 32*a*b^4*c^2*d*e^2*f + 192*a^3*b^2*
c^2*e*f^2*g + 192*a^3*b^2*c^2*d*f*g^2 + 960*a^2*b^2*c^3*d^2*e*g + 192*a^2*b^2*c^3*d*e^2*f - 48*a^3*b^3*c*f^2*g
^2 - 192*a^3*b*c^3*e^2*f^2 + 198*a*b^4*c^2*d^2*f^2 + 144*a^2*b^3*c^2*d*f^3 - 960*a^2*b*c^4*d^2*e^2 + 240*a*b^3
*c^3*d^2*e^2 + 768*a^3*c^4*d*e^2*f + 512*a^3*b*c^3*e^3*g + 128*a^3*b^3*c*e*g^3 + 60*a*b^5*c*d^2*g^2 + 2016*a^2
*b*c^4*d^3*f - 496*a*b^3*c^3*d^3*f + 224*a^3*b*c^3*d*f^3 - 384*a^3*b^2*c^2*e^2*g^2 - 240*a^2*b^3*c^2*d^2*g^2 -
 16*a^2*b^3*c^2*e^2*f^2 - 960*a^2*b^2*c^3*d^2*f^2 + 16*b^6*c*d^2*e*g - 8*a*b^6*d*f*g^2 - 18*a*b^5*c*d*f^3 - 4*
a^2*b^5*f^2*g^2 - 288*a^3*c^4*d^2*f^2 - 16*b^5*c^2*d^2*e^2 - 24*a^3*b^2*c^2*f^4 + 30*b^5*c^2*d^3*f - 9*b^6*c*d
^2*f^2 - 9*a^2*b^4*c*f^4 + 360*a*b^2*c^4*d^4 - 4*b^7*d^2*g^2 - 16*a^4*c^3*f^4 - 16*a^3*b^4*g^4 - 256*a^3*c^4*e
^4 - 25*b^4*c^3*d^4 - 1296*a^2*c^5*d^4, z, k)*((x*(2048*a^5*c^6*e - 32*a^2*b^6*c^3*e + 384*a^3*b^4*c^4*e - 153
6*a^4*b^2*c^5*e + 16*a^2*b^7*c^2*g - 192*a^3*b^5*c^3*g + 768*a^4*b^3*c^4*g - 1024*a^5*b*c^5*g))/(4*(a^2*b^6 -
64*a^5*c^3 - 12*a^3*b^4*c + 48*a^4*b^2*c^2)) - (6144*a^5*c^6*d - 288*a^2*b^6*c^3*d + 1920*a^3*b^4*c^4*d - 5632
*a^4*b^2*c^5*d + 16*a^2*b^7*c^2*f - 192*a^3*b^5*c^3*f + 768*a^4*b^3*c^4*f + 16*a*b^8*c^2*d - 1024*a^5*b*c^5*f)
/(8*(a^2*b^6 - 64*a^5*c^3 - 12*a^3*b^4*c + 48*a^4*b^2*c^2)) + (root(1572864*a^8*b^2*c^5*z^4 - 983040*a^7*b^4*c
^4*z^4 + 327680*a^6*b^6*c^3*z^4 - 61440*a^5*b^8*c^2*z^4 + 6144*a^4*b^10*c*z^4 - 1048576*a^9*c^6*z^4 - 256*a^3*
b^12*z^4 + 32768*a^6*b*c^4*e*g*z^2 - 512*a^3*b^7*c*e*g*z^2 + 576*a^2*b^8*c*d*f*z^2 - 24576*a^5*b^3*c^3*e*g*z^2
 + 6144*a^4*b^5*c^2*e*g*z^2 + 24576*a^5*b^2*c^4*d*f*z^2 - 3072*a^3*b^6*c^2*d*f*z^2 + 2048*a^4*b^4*c^3*d*f*z^2
- 1536*a^4*b^6*c*g^2*z^2 + 12288*a^6*b*c^4*f^2*z^2 + 61440*a^5*b*c^5*d^2*z^2 - 49152*a^6*c^5*d*f*z^2 + 432*a*b
^9*c*d^2*z^2 - 8192*a^6*b^2*c^3*g^2*z^2 + 6144*a^5*b^4*c^2*g^2*z^2 - 8192*a^5*b^3*c^3*f^2*z^2 + 1536*a^4*b^5*c
^2*f^2*z^2 + 24576*a^5*b^2*c^4*e^2*z^2 - 6144*a^4*b^4*c^3*e^2*z^2 + 512*a^3*b^6*c^2*e^2*z^2 - 61440*a^4*b^3*c^
4*d^2*z^2 + 24064*a^3*b^5*c^3*d^2*z^2 - 4608*a^2*b^7*c^2*d^2*z^2 - 32*a*b^10*d*f*z^2 + 128*a^3*b^8*g^2*z^2 - 3
2768*a^6*c^5*e^2*z^2 - 16*a^2*b^9*f^2*z^2 - 16*b^11*d^2*z^2 + 384*a^2*b^6*c*d*f*g*z - 4096*a^4*b*c^4*d*e*f*z +
 64*a*b^7*c*d*e*f*z + 2048*a^4*b^2*c^3*d*f*g*z - 1536*a^3*b^4*c^2*d*f*g*z + 3072*a^3*b^3*c^3*d*e*f*z - 768*a^2
*b^5*c^2*d*e*f*z + 1024*a^5*b*c^3*f^2*g*z + 192*a^3*b^5*c*f^2*g*z - 9216*a^4*b*c^4*d^2*g*z + 32*a^2*b^6*c*e*f^
2*z - 672*a*b^6*c^2*d^2*e*z + 336*a*b^7*c*d^2*g*z - 768*a^4*b^3*c^2*f^2*g*z + 7936*a^3*b^3*c^3*d^2*g*z - 2496*
a^2*b^5*c^2*d^2*g*z + 1536*a^4*b^2*c^3*e*f^2*z - 384*a^3*b^4*c^2*e*f^2*z - 15872*a^3*b^2*c^4*d^2*e*z + 4992*a^
2*b^4*c^3*d^2*e*z - 32*a*b^8*d*f*g*z - 16*a^2*b^7*f^2*g*z - 2048*a^5*c^4*e*f^2*z + 18432*a^4*c^5*d^2*e*z + 32*
b^8*c*d^2*e*z - 16*b^9*d^2*g*z - 768*a^3*b*c^3*d*e*f*g + 32*a*b^5*c*d*e*f*g - 192*a^2*b^3*c^2*d*e*f*g + 16*a^2
*b^4*c*e*f^2*g + 48*a^2*b^4*c*d*f*g^2 - 240*a*b^4*c^2*d^2*e*g - 32*a*b^4*c^2*d*e^2*f + 192*a^3*b^2*c^2*e*f^2*g
 + 192*a^3*b^2*c^2*d*f*g^2 + 960*a^2*b^2*c^3*d^2*e*g + 192*a^2*b^2*c^3*d*e^2*f - 48*a^3*b^3*c*f^2*g^2 - 192*a^
3*b*c^3*e^2*f^2 + 198*a*b^4*c^2*d^2*f^2 + 144*a^2*b^3*c^2*d*f^3 - 960*a^2*b*c^4*d^2*e^2 + 240*a*b^3*c^3*d^2*e^
2 + 768*a^3*c^4*d*e^2*f + 512*a^3*b*c^3*e^3*g + 128*a^3*b^3*c*e*g^3 + 60*a*b^5*c*d^2*g^2 + 2016*a^2*b*c^4*d^3*
f - 496*a*b^3*c^3*d^3*f + 224*a^3*b*c^3*d*f^3 - 384*a^3*b^2*c^2*e^2*g^2 - 240*a^2*b^3*c^2*d^2*g^2 - 16*a^2*b^3
*c^2*e^2*f^2 - 960*a^2*b^2*c^3*d^2*f^2 + 16*b^6*c*d^2*e*g - 8*a*b^6*d*f*g^2 - 18*a*b^5*c*d*f^3 - 4*a^2*b^5*f^2
*g^2 - 288*a^3*c^4*d^2*f^2 - 16*b^5*c^2*d^2*e^2 - 24*a^3*b^2*c^2*f^4 + 30*b^5*c^2*d^3*f - 9*b^6*c*d^2*f^2 - 9*
a^2*b^4*c*f^4 + 360*a*b^2*c^4*d^4 - 4*b^7*d^2*g^2 - 16*a^4*c^3*f^4 - 16*a^3*b^4*g^4 - 256*a^3*c^4*e^4 - 25*b^4
*c^3*d^4 - 1296*a^2*c^5*d^4, z, k)*x*(8192*a^6*b*c^6 + 32*a^2*b^9*c^2 - 512*a^3*b^7*c^3 + 3072*a^4*b^5*c^4 - 8
192*a^5*b^3*c^5))/(4*(a^2*b^6 - 64*a^5*c^3 - 12*a^3*b^4*c + 48*a^4*b^2*c^2))) - (512*a^4*c^5*e*f - 32*a*b^5*c^
3*d*e - 1024*a^3*b*c^5*d*e + 16*a*b^6*c^2*d*g - 256*a^4*b*c^4*f*g + 384*a^2*b^3*c^4*d*e - 192*a^2*b^4*c^3*d*g
- 32*a^2*b^4*c^3*e*f + 512*a^3*b^2*c^4*d*g + 16*a^2*b^5*c^2*f*g)/(8*(a^2*b^6 - 64*a^5*c^3 - 12*a^3*b^4*c + 48*
a^4*b^2*c^2)) + (x*(2*b^6*c^3*d^2 - 576*a^3*c^6*d^2 + 64*a^4*c^5*f^2 - 36*a*b^4*c^4*d^2 + 128*a^3*b*c^5*e^2 +
256*a^2*b^2*c^5*d^2 - 32*a^2*b^3*c^4*e^2 + 20*a^2*b^4*c^3*f^2 - 96*a^3*b^2*c^4*f^2 - 8*a^2*b^5*c^2*g^2 + 32*a^
3*b^3*c^3*g^2 + 4*a*b^5*c^3*d*f + 320*a^3*b*c^5*d*f - 96*a^2*b^3*c^4*d*f + 32*a^2*b^4*c^3*e*g - 128*a^3*b^2*c^
4*e*g))/(4*(a^2*b^6 - 64*a^5*c^3 - 12*a^3*b^4*c + 48*a^4*b^2*c^2))) - (x*(32*a^2*c^5*e^3 - 2*b^3*c^4*d^2*e + b
^4*c^3*d^2*g - 4*a^2*b^3*c^2*g^3 + 24*a*b*c^5*d^2*e - 48*a^2*c^5*d*e*f - 12*a*b^2*c^4*d^2*g + 16*a^2*b*c^4*e*f
^2 - 48*a^2*b*c^4*e^2*g + 24*a^2*b^2*c^3*e*g^2 - 8*a^2*b^2*c^3*f^2*g - 4*a*b^2*c^4*d*e*f + 2*a*b^3*c^3*d*f*g +
 24*a^2*b*c^4*d*f*g))/(4*(a^2*b^6 - 64*a^5*c^3 - 12*a^3*b^4*c + 48*a^4*b^2*c^2)))*root(1572864*a^8*b^2*c^5*z^4
 - 983040*a^7*b^4*c^4*z^4 + 327680*a^6*b^6*c^3*z^4 - 61440*a^5*b^8*c^2*z^4 + 6144*a^4*b^10*c*z^4 - 1048576*a^9
*c^6*z^4 - 256*a^3*b^12*z^4 + 32768*a^6*b*c^4*e*g*z^2 - 512*a^3*b^7*c*e*g*z^2 + 576*a^2*b^8*c*d*f*z^2 - 24576*
a^5*b^3*c^3*e*g*z^2 + 6144*a^4*b^5*c^2*e*g*z^2 + 24576*a^5*b^2*c^4*d*f*z^2 - 3072*a^3*b^6*c^2*d*f*z^2 + 2048*a
^4*b^4*c^3*d*f*z^2 - 1536*a^4*b^6*c*g^2*z^2 + 12288*a^6*b*c^4*f^2*z^2 + 61440*a^5*b*c^5*d^2*z^2 - 49152*a^6*c^
5*d*f*z^2 + 432*a*b^9*c*d^2*z^2 - 8192*a^6*b^2*c^3*g^2*z^2 + 6144*a^5*b^4*c^2*g^2*z^2 - 8192*a^5*b^3*c^3*f^2*z
^2 + 1536*a^4*b^5*c^2*f^2*z^2 + 24576*a^5*b^2*c^4*e^2*z^2 - 6144*a^4*b^4*c^3*e^2*z^2 + 512*a^3*b^6*c^2*e^2*z^2
 - 61440*a^4*b^3*c^4*d^2*z^2 + 24064*a^3*b^5*c^3*d^2*z^2 - 4608*a^2*b^7*c^2*d^2*z^2 - 32*a*b^10*d*f*z^2 + 128*
a^3*b^8*g^2*z^2 - 32768*a^6*c^5*e^2*z^2 - 16*a^2*b^9*f^2*z^2 - 16*b^11*d^2*z^2 + 384*a^2*b^6*c*d*f*g*z - 4096*
a^4*b*c^4*d*e*f*z + 64*a*b^7*c*d*e*f*z + 2048*a^4*b^2*c^3*d*f*g*z - 1536*a^3*b^4*c^2*d*f*g*z + 3072*a^3*b^3*c^
3*d*e*f*z - 768*a^2*b^5*c^2*d*e*f*z + 1024*a^5*b*c^3*f^2*g*z + 192*a^3*b^5*c*f^2*g*z - 9216*a^4*b*c^4*d^2*g*z
+ 32*a^2*b^6*c*e*f^2*z - 672*a*b^6*c^2*d^2*e*z + 336*a*b^7*c*d^2*g*z - 768*a^4*b^3*c^2*f^2*g*z + 7936*a^3*b^3*
c^3*d^2*g*z - 2496*a^2*b^5*c^2*d^2*g*z + 1536*a^4*b^2*c^3*e*f^2*z - 384*a^3*b^4*c^2*e*f^2*z - 15872*a^3*b^2*c^
4*d^2*e*z + 4992*a^2*b^4*c^3*d^2*e*z - 32*a*b^8*d*f*g*z - 16*a^2*b^7*f^2*g*z - 2048*a^5*c^4*e*f^2*z + 18432*a^
4*c^5*d^2*e*z + 32*b^8*c*d^2*e*z - 16*b^9*d^2*g*z - 768*a^3*b*c^3*d*e*f*g + 32*a*b^5*c*d*e*f*g - 192*a^2*b^3*c
^2*d*e*f*g + 16*a^2*b^4*c*e*f^2*g + 48*a^2*b^4*c*d*f*g^2 - 240*a*b^4*c^2*d^2*e*g - 32*a*b^4*c^2*d*e^2*f + 192*
a^3*b^2*c^2*e*f^2*g + 192*a^3*b^2*c^2*d*f*g^2 + 960*a^2*b^2*c^3*d^2*e*g + 192*a^2*b^2*c^3*d*e^2*f - 48*a^3*b^3
*c*f^2*g^2 - 192*a^3*b*c^3*e^2*f^2 + 198*a*b^4*c^2*d^2*f^2 + 144*a^2*b^3*c^2*d*f^3 - 960*a^2*b*c^4*d^2*e^2 + 2
40*a*b^3*c^3*d^2*e^2 + 768*a^3*c^4*d*e^2*f + 512*a^3*b*c^3*e^3*g + 128*a^3*b^3*c*e*g^3 + 60*a*b^5*c*d^2*g^2 +
2016*a^2*b*c^4*d^3*f - 496*a*b^3*c^3*d^3*f + 224*a^3*b*c^3*d*f^3 - 384*a^3*b^2*c^2*e^2*g^2 - 240*a^2*b^3*c^2*d
^2*g^2 - 16*a^2*b^3*c^2*e^2*f^2 - 960*a^2*b^2*c^3*d^2*f^2 + 16*b^6*c*d^2*e*g - 8*a*b^6*d*f*g^2 - 18*a*b^5*c*d*
f^3 - 4*a^2*b^5*f^2*g^2 - 288*a^3*c^4*d^2*f^2 - 16*b^5*c^2*d^2*e^2 - 24*a^3*b^2*c^2*f^4 + 30*b^5*c^2*d^3*f - 9
*b^6*c*d^2*f^2 - 9*a^2*b^4*c*f^4 + 360*a*b^2*c^4*d^4 - 4*b^7*d^2*g^2 - 16*a^4*c^3*f^4 - 16*a^3*b^4*g^4 - 256*a
^3*c^4*e^4 - 25*b^4*c^3*d^4 - 1296*a^2*c^5*d^4, z, k), k, 1, 4) + ((b*e - 2*a*g)/(2*(4*a*c - b^2)) + (x^2*(2*c
*e - b*g))/(2*(4*a*c - b^2)) + (x*(2*a*c*d - b^2*d + a*b*f))/(2*a*(4*a*c - b^2)) - (c*x^3*(b*d - 2*a*f))/(2*a*
(4*a*c - b^2)))/(a + b*x^2 + c*x^4)